Калькулятор относительной погрешности. Относительная погрешность

При практическом осуществлении процесса измерений независимо от точности средств измерений, правильности методики и тщательности
выполнения измерений результаты измерений отличаются от истинного значения измеряемой величины, т.е. неизбежны погрешности измерений. При оценке погрешности вместо истинного значения принимают действительное; следовательно, можно дать лишь приближенную оценку погрешности измерений. Оценка достоверности результата измерений, т.е. определение погрешности измерений - одна из основных задач метрологии .
Погрешность — это отклонение результата измерения от истинного значения измеряемой величины. Погрешности условно можно разделить на погрешности средств измерения и погрешности результата измерений.
Погрешности средств измерения были рассмотрены в главе 3.
Погрешность результата измерения — это число, указывающее возможные границы неопределенности значения измеряемой величины.
Ниже будет дана классификация и рассмотрены погрешности результата измерений.
По способу числового выражения различают абсолютные и относительные погрешности.
В зависимости от источника возникновения погрешности бывают инструментальные, методические, отсчитывания и установки.
По закономерностям проявления погрешности измерений делят на систематические, прогрессирующие, случайные и грубые.
Рассмотрим указанные погрешности измерений более подробно.

4.1. Абсолютные и относительные погрешности

Абсолютная погрешность D - это разность между измеренным X и истинным Xи значениями измеряемой величины. Абсолютная погрешность выражается в единицах измеряемой величины: D = Х - Хи.
Поскольку истинное значение измеряемой величины определить невозможно, вместо него на практике используют действительное значение измеряемой величины Хд. Действительное значение находят экспериментально, путем применения достаточно точных методов и средств измерений. Оно мало отличается от истинного значения и для решения поставленной задачи может использоваться вместо него. При поверке за действительное значение обычно принимают показания образцовых средств измерений. Таким образом, на практике абсолютную погрешность находят по формуле D » Х - Хд. Относительная погрешность d — это отношение абсолютной погрешности измерения к истинному (действительному) значению измеряемой величины (она обычно выражается в процентах) : .

4.2. Погрешности инструментальные и методические,
отсчитывания и установки

Инструментальными (приборными или аппаратурными) погрешностями называются такие, которые принадлежат данному средству измерений, могут быть определены при его испытаниях и занесены в его паспорт.
Эти погрешности обусловлены конструктивными и технологическими недостатками средств измерений, а также следствием их износа, старения или неисправности. Инструментальные погрешности , обусловленные погрешностями применяемых средств измерений, были рассмотрены в главе 3.
Однако, кроме инструментальных погрешностей, при измерениях возникают еще и такие погрешности, которые не могут быть приписаны данному прибору, не могут быть указаны в его паспорте и называются методическими, т.е. связанными не с самим прибором, а с методом его использования.
Методические погрешности могут возникать из-за несовершенства разработки теории явлений, положенных в основу метода измерений, неточности соотношений, используемых для нахождения оценки измеряемой величины, а также из-за несоответствия измеряемой величины и ее модели.
Рассмотрим примеры, иллюстрирующие методическую погрешность измерения.
Объектом исследования является источник переменного напряжения, амплитудное значение которого Um нужно измерить. На основании предварительного изучения объекта исследования за его модель принят генератор напряжения синусоидальной формы. Используя вольтметр, предназначенный для измерений действующих значений переменных напряжений, и зная соотношение между действующим и амплитудным значениями синусоидального напряжения, получаем результат измерения в виде Um = × Uv, где Uv - показание вольтметра. Более тщательное изучение объекта могло бы выявить, что форма измеряемого напряжения отличается от синусоидальной и более правильное соотношение между значением измеряемой величины и показанием вольтметра Um = k × Uv , где k ¹ . Таким образом, несовершенство принятой модели объекта исследования приводит к методической погрешности измерения D U = × Uv - k × Uv .
Эту погрешность можно уменьшить, либо рассчитав значение k на основе анализа формы кривой измеряемого напряжения, либо заменив средство измерений, взяв вольтметр, предназначенный для измерений амплитудных значений переменных напряжений .
Очень часто встречающейся причиной возникновения методических погрешностей является то обстоятельство, что, организуя измерения, мы вынуждены измерять (или сознательно измеряем) не ту величину, которая должна быть измерена, а некоторую другую, близкую, но не равную ей .

Примером такой методической погрешности может служить погрешность измерения напряжения вольтметром с конечным сопротивлением (рис. 4.1).
Вследствие шунтирования вольтмет-ром того участка цепи, на котором измеряется напряжение, оно оказывается меньшим, чем было до присоединения вольтметра. И действительно, напряжение, которое покажет вольтметр определится выражением U = I ×R v . Если учесть, что ток в цепи I = E/(Ri + Rv), то
< .
Поэтому для одного и того же вольтметра, присоединяемого поочередно к разным участкам исследуемой цепи, эта погрешность различна: на низкоомных участках она ничтожна, а на высокоомных может быть очень большой. Эта погрешность могла бы быть устранена, если бы вольтметр был постоянно подключен к данному участку цепи на все время работы устройства (как на щите электростанции), но это невыгодно по многим причинам.
Нередки случаи, когда вообще трудно указать способ измерения, исключающий методическую погрешность. Пусть, например, измерению подлежит температура раскаленных болванок, поступающих из печи на прокатный стан. Спрашивается, где разместить датчик температуры (например, термопару): под болванкой, сбоку или над болванкой? Где бы мы его ни поместили, мы не измерим внутренней температуры тела болванки, т.е. будем иметь существенную методическую погрешность, так как измеряем не то, что нужно, а то, что проще (не сверлить же в каждой болванке канал, чтобы поместить термопару в её центре).
Таким образом, основной отличительной особенностью методических погрешностей является то обстоятельство, что они не могут быть указаны в паспорте прибора, а должны оцениваться самим экспериментатором при организации выбранной методики измерений, поэтому он обязан четко различать фактически измеряемую им величину от подлежащей измерению.
Погрешность отсчитывания происходит от недостаточно точного отсчитывания показаний. Она обусловлена субъективными особенностями наблюдателя (например, погрешность интерполирования, т.е. неточного отсчета долей деления по шкале прибора) и вида отсчетного устройства (например, погрешность от параллакса). Погрешности отсчитывания отсутствуют при использовании цифровых измерительных приборов, что является одной из причин перспективности последних.
Погрешность установки вызывается отклонением условий измерения от нормальных, т.е. условий, при которых производилась градуировка и поверка средств измерений. Сюда относится, например, погрешность от неправильной установки прибора в пространстве или его указателя на нулевую отметку, от изменения температуры, напряжения питания и других влияющих величин.
Рассмотренные виды погрешностей в равной степени пригодны для характеристики точности как отдельных результатов измерений, так и средств измерений.

4.3. Систематические, прогрессирующие, случайные и грубые погрешности

Систематическая погрешность измерений Dс — составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины .
Причины возникновения систематических погрешностей обычно могут быть установлены при подготовке и проведении измерений. Эти причины весьма разнообразны: несовершенство используемых средств и методов измерений, неправильная установка средства измерений, влияние внешних факторов (влияющих величин) на параметры средств измерений и на сам объект измерения, недостатки метода измерения (методические погрешности), индивидуальные особенности оператора (субъективные погрешности) и др. . По характеру проявления систематические погрешности делятся на постоянные и переменные. К постоянным относятся, например, погрешности, обусловленные неточностью подгонки значения меры, неправильной градуировкой шкалы прибора, неправильной установкой прибора относительно направления магнитных полей и т.д. Переменные систематические погрешности обусловлены воздействием на процесс измерения влияющих величин и могут возникнуть, например, при изменении напряжения источника питания прибора, внешних магнитных полей, частоты измеряемого переменного напряжения и пр. Основная особенность систематических погрешностей состоит в том, что зависимость их от влияющих величин подчиняется определенному закону. Этот закон может быть изучен, а результат измерения - уточнен путем внесения поправок, если числовые значения этих погрешностей определены. Другим способом уменьшения влияния систематический погрешностей является применение таких методов измерения, которые дают возможность исключить влияние систематических погрешностей без определения их значений (например, метод замещения).
Результат измерений тем ближе к истинному значению измеряемой величины, чем меньше оставшиеся неисключенные систематические погрешности. Наличие исключенных систематических погрешностей определяет правильность измерений, качество, отражающее близость к нулю систематических погрешностей . Результат измерения будет настолько правильным, насколько он неискажен систематическими погрешностями и тем правильнее, чем меньше эти погрешности.
Прогрессирующими (или дрейфовыми) называются непредсказуемые погрешности, медленно изменяющиеся во времени. Эти погрешности, как правило, вызываются процессами старения тех или иных деталей аппаратуры (разрядка источников питания, старение резисторов, конденсаторов, деформация механических деталей, усадка бумажной ленты в самопишущих приборах и т. п.). Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы путем введения поправки лишь в заданный момент времени, а далее вновь непредсказуемо возрастают. Поэтому в отличие от систематических погрешностей, которые могут быть скорректированы поправкой, найденной один раз на весь срок службы прибора, прогрессирующие погрешности требуют непрерывного повторения коррекции и тем чаще, чем меньше должно быть их остаточное значение. Другая особенность прогрессирующих погрешностей состоит в том, что их изменение во времени представляет собой нестационарный случайный процесс и поэтому в рамках хорошо разработанной теории стационарных случайных процессов они могут быть описаны лишь с оговорками.
Случайная погрешность измерения — составляющая погрешности измерений, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Значение и знак случайных погрешностей определить невозможно, они не поддаются непосредственному учету вследствие их хаотического изменения, обусловленного одновременным воздействием на результат измерения различных независимых друг от друга факторов. Обнаруживаются случайные погрешности при многократных измерениях одной и той же величины (отдельные измерения в этом случае называются наблюдением) одними и теми же средствами измерения в одинаковых условиях одним и тем же наблюдателем, т.е. при равноточных (равнорассеянных) измерениях. Влияние случайных погрешностей на результат измерения учитывается методами математической статистики и теории вероятности.
Грубые погрешности измерений - случайные погрешности измерений, существенно превышающие ожидаемые при данных условиях погрешности.
Грубые погрешности (промахи) обычно обусловлены неправильным отсчетом по прибору, ошибкой при записи наблюдений, наличием сильно влияющей величины, неисправностью средств измерений и другими причинами. Как правило, результаты измерений, содержащие грубые погрешности, не принимаются во внимание, поэтому грубые погрешности мало влияют на точность измерения. Обнаружить промах бывает не всегда легко, особенно при единичном измерении; часто трудно бывает отличить грубую погрешность от большой по значению случайной погрешности. Если грубые погрешности встречаются часто, мы поставим под сомнение все результаты измерений. Поэтому грубые погрешности влияют на годность измерений.
В заключение описанного деления погрешностей средств и результатов измерений на случайную, прогрессирующую и систематическую составляющие необходимо обратить внимание на то, что такое деление является весьма упрощенным приемом их анализа. Поэтому всегда следует помнить, что в реальной действительности эти составляющие погрешности проявляются совместно и образуют единый нестационарный случайный процесс. Погрешность результата измерений при этом можно представить в виде суммы случайных и систематических Dс погрешностей: D = Dс +. В погрешности измерений входит случайная составляющая, поэтому её следует считать случайной величиной.
Рассмотрение характера проявления погрешностей измерений показывает, нам, что единственно правильный путь оценки погрешностей дает нам теория вероятностей и математическая статистика.

4.4. Вероятностный подход к описанию погрешностей

Законы распределения случайных погрешностей. Случайные погрешности обнаруживают при проведении ряда измерений одной и той же величины. Результаты измерений при этом, как правило, не совпадают между собой, так как из-за суммарного воздействия множества различных факторов, не поддающихся учету, каждое новое измерение дает и новое случайное значение измеряемой величины. При правильном проведении измерений, достаточном их числе и исключении систематических погрешностей и промахов можно утверждать, что истинное значение измеряемой величины не выходит за пределы значений, полученных при этих измерениях. Оно остается неизвестным до тех пор пока не определено теоретически вероятное значение случайной погрешности.
Пусть величину А измеряли п раз и наблюдали при этом значения а1, a2, а3,…,аi ,...,аn. Случайная абсолютная погрешность единичного измерения определяется разностью
Di = ai - A . (4.1)
Графически результаты отдельных измерений представлены на рис. 4.2.
При достаточно большом числе п одни и те же погрешности, если они имеют ряд дискретных значений, повторяются и поэтому можно установить относительную частоту (частость) их появления, т.е. отношение числа полученных одинаковых данных mi к общему числу проведенных измерении п. При продолжении измерений величины А эта частота не изменится, поэтому ее можно считать вероятностью появления погрешности при данных измерениях: p (Ai ) = mi / n .

Статистическая зависимость вероятности появления случайных погрешностей от их значения называется законом распределе- ния погрешностей или законом распределения вероятности . Этот закон определяет характер появления различных результатов отдельных измерений. Различают два вида описания законов распределения: интегральный и дифференциальный .
Интегральным законом , или функцией распределения вероятностей F(D) случайной погрешности Di в i-м опыте, называют функцию, значение которой для каждого Dявляется вероятностью события Р(D) , заключающегося в том, что случайная погрешность Diпринимает значения, меньше некоторого значения D, т.е. функцию F(D) = Р[ Di < D]. Эта функция при изменении Dот -¥ до +¥ принимает значения от 0 до 1 и является неубывающей. Она существует для всех случайных величин как дискретных, так и непрерывных (рис 4.3 а).
Если F(D) симметрична относительно точки А, соответствующей вероятности 0,5 , то распределение результатов наблюдения будет симметрично относительно истинного значения А. В этом случае целесообразно F(D) сдвинуть по оси абсцисс на значение DA, т.е. исключить систематическую составляющую погрешность (DА = Dс) и получить функцию распределения случайной составляющей погрешности D = (рис. 4.3 б). Функция распределения вероятности погрешности D отличается от функции распределения вероятности случайной составляющей погрешности только сдвигом по оси абсцисс на значение систематической составляющей погрешности .
Дифференциальным законом распределения вероятностей для случайной погрешности с непрерывной и дифференцируемой функцией распределения F(D) называют функцию . Эта зависимость есть плотность распределения вероятностей. График плотности распределения вероятностей может иметь различную форму в зависимости от закона распределения погрешностей. Для F(D) , изображенной на рис. 4.3 б, кривая распределения f(D) имеет форму, близкую к форме колокола (рис. 4.3 в).
Вероятность появления случайных погрешностей определяется площадью, ограниченной кривой f(D) или её частью и осью абсцисс (рис. 4.3 в). В зависи мости от рассматриваемого интервала погрешности .


Значение f(D) d D есть элемент вероятности, равный площади прямоугольника с основанием d D и абсциссами D1 , D2, называемыми квантилями. Так как F(+ ¥)= 1, то справедливо равенство ,
т.е. площадь под кривой f(D) согласно правилу нормирования равна единице и отражает вероятность всех возможных событий.
В практике электрических измерений одним из наиболее распространенных законов распределения случайных погрешностей является нормальный закон (Гаусса).
Математическое выражение нормального закона имеет вид
,
где f(D) - плотность вероятности случайной погрешности D = а i - A ; s - среднее квадратическое отклонение. Среднее квадратическое отклонение может быть выражено через случайные отклонения результатов наблюдений Di (см. формулу (4.1)):
.
Характер кривых, описанных этим уравнением для двух значений s, показан на рис. 4.4. Из этих кривых видно, что чем меньше s, тем чаще встречаются малые случайные погрешности, т.е. тем точнее выполнены измерения. В практике измерений встречаются и другие законы распределения, которые могут быть установлены на основании статистической обработки

опытных данных. Некоторые из наиболее часто встречающихся законов распределения приведены в ГОСТ 8.011-84 «Показатели точности измерений и формы представления результатов измерений».
Основными характеристи- ками законов распределения являются математическое ожидание и дисперсия .
Математическое ожидание случайной величины - это такое ее значение, вокруг которого группируются результаты отдельных наблюдений. Мате-матическое ожидание дискрет-ной случайной величины М[X] определяется как сумма произ-ведений всех возможных значений случайной величины на вероятность этих значений .
Для непрерывных случайных величин приходится прибегать к интегрированию, для чего необходимо знать зависимость плотности вероятности от х, т. е. f(х), где х= D. Тогда.
Это выражение означает, что математическое ожидание равно сумме бесконечно большого числа произведений всех возможных значений случайной величины х на бесконечно малые площади f(х) dх, где f(х) — ординаты для каждого х, a dх - элементарные отрезки оси абсцисс.
Если наблюдается нормальное распределение случайных погрешностей, то математическое ожидание случайной погрешности равно нулю (рис. 4.4). Если же рассматривать нормальное распределение результатов, то математическое ожидание будет соответствовать истинному значению измеряемой величины, которое мы обозначаем через A.
Систематическая погрешность при этом представляет собой отклонение математического ожидания результатов наблюдений от истинного значения А измеряемой величины: Dс = М[ X] - A , а случайная погрешность - разность между результатом единичного наблюдения и математическим ожиданием: .
Дисперсия ряда наблюдений характеризует степень рассеивания (разброса) результатов отдельных наблюдений вокруг математического ожидания:
D[ X] = Dx= M[(ai - mx)2].
Чем меньше дисперсия, тем меньше разброс отдельных результатов, тем точнее выполнены измерения. Однако дисперсия выражается в единицах в квадрате измеряемой величины. Поэтому в качестве характеристики точности ряда наблюдений наиболее часто применяют среднее квадратическое отклонение (СКО), равное корню квадратному из дисперсии: .
Рассмотренное нормальное распределение случайных величин, в том числе и случайных погрешностей, является теоретическим, поэтому описанное нормальное распределение следует рассматривать как «идеальное», т. е. как теоретическую основу для изучения случайных погрешностей и их влияния на результат измерений.
Далее излагаются способы применения этого распределения на практике с той или иной степенью приближения. Рассматривается также еще одно распределение (распределение Стьюдента), применяемое при небольших количествах наблюдений.
Оценки погрешностей результатов прямых измерений. Пусть было проведено п прямых измерений одной и той же величины. В общем случае в каждом из актов измерений погрешность будет разной:
D i = ai - A,
где Di - погрешность i-го измерения; ai - результат i-го измерения.
Поскольку истинное значение измеряемой величины A неизвестно, непосредственно случайную абсолютную погрешность вычислить нельзя. При практических расчетах приходится вместо A использовать его оценку. Обычно принимают, что истинное значение равно среднему арифметическому значению ряда измерений:
. (4.2)
где а i - результаты отдельных измерений; п — число измерений.
Теперь аналогично выражению (4.1) можно определить отклонение результата каждого измерения от среднего значения :
(4.3)
где v i - отклонение результата единичного измерения от среднего значения. Следует помнить, что сумма отклонений результата измерений от среднего значения равна нулю, а сумма их квадратов минимальна, т. е.
и min.
Эти свойства используются при обработке результатов измерений для контроля правильности вычислений.
Затем вычисляют оценку значения средней квадратической погрешности для данного ряда измерений

. (4.4)
Согласно теории вероятностей при достаточно большом числе измерений, имеющих независимые случайные погрешности, оценка S сходится по вероятности к s. Таким образом,

. (4.5)
Ввиду того что среднее арифметическое значение также является случайной величиной, имеет смысл понятие среднеквадратического отклонения среднего арифметического значения. Эту величину обозначим символом sср. Можно показать, что для независимых погрешностей
. (4.6)
Значение sср характеризует степень разброса . Как указывалось выше, выступает оценкой истинного значения измеряемой величины, т.е. является конечным результатом выполняемых измерений. Поэтому sср называют также средней квадратической погрешностью результата измерений.
На практике значением s, вычисляемым по формуле (4.5), пользуются в том случае, если необходимо дать характеристику точности применяемого метода измерения: если метод точен, то разброс результатов отдельных измерений мал, т.е. мало значение s. Значение же sср , вычисляемое по (4.6), используется для характеристики точности результата измерений некоторой величины, т.е. результата, полученного посредством математической обработки итогов целого ряда отдельных прямых измерений.
При оценке результатов измерений иногда пользуются понятием максимальной или предельной допустимой погрешности, значение которой определяют в долях s или S . В настоящее время существуют разные критерии установления максимальной погрешности, т. е. границы поля допуска ±D, в которые случайные погрешности должны уложиться. Общепринятым пока является определение максимальной погрешности D = 3s (или 3S ). В последнее время на основании информационной теории измерений профессор П. В. Новицкий рекомендует пользоваться значением D = 2s.
Введем теперь важные понятия доверительной вероятности и доверительного интервала. Как указывалось выше, среднее арифметическое значение , полученное в результате некоторого ряда измерений, является оценкой истинного значения А и, как правило, не совпадает с ним, а отличается на значение погрешности. Пусть Рд есть вероятность того, что отличается от А не более чем на D, т.е. Р(- D < А < + D )=Рд . Вероятность Рд называется доверительной вероятностью, а интервал значений измеряемой величины от - D до + D - доверительным интервалом.
Приведенные выше неравенства означают, что с вероятностью Рд доверительный интервал от - D до + D заключает в себе истинное значение А . Таким образом, чтобы характеризовать случайную погрешность достаточно полно, надо располагать двумя числами — доверительной вероятностью и соответствующим ей доверительным интервалом. Если закон распределения вероятностей погрешностей известен, то по заданной доверительной вероятности можно определить доверительный интервал. В частности, при достаточно большом числе измерений часто бывает оправданным использование нормального закона, в то время как при небольшом числе измерений (п < 20), результаты которых принадлежат нормальному распределению, следует пользоваться распределением Стьюдента. Это распределение имеет плотность вероятностей, практически совпадающую с нормальной при больших п, но значительно отличающуюся от нормальной при малых п.
В табл. 4.1 приведены так называемые квантили распределения Стьюдента ½t(n) ½Рд для числа измерений п = 2 - 20 и доверительных вероятностей Р = 0,5 - 0,999.
Укажем, однако, что обычно таблицы распределения Стьюдента приводятся не для значений п и Рд, а для значений m = n-1 иa =1 - Рд, что следует учитывать при пользовании ими. Чтобы определить доверительный интервал, надо для данных п и Рд найти квантиль ½t(n) ½Рд и вычислить величины Ан = - sср × ½t(n) ½РдиАв = + sср × ½t(n) ½Рд, которые будут являться нижней и верхней границами доверительного интервала.

После нахождения доверительных интервалов для заданной доверительной вероятности согласно выше приведенной методике делают запись результата измерения в виде ; D = ¸ Dв; Рд ,
где - оценка истинного значения результата измерения в единицах измеряемой величины; D - погрешность измерения; Dв = +sср × ½t(n) ½Рд и Dн = -sср × ½t(n) ½Рд - верхняя и нижняя границы погрешности измерения; Рд - доверительная вероятность .

Таблица 4.1

Значения квантилей распределения Стьюдента t(n) при доверительной

вероятности Рд

Оценка погрешностей результатов косвенных измерений. При косвенных измерениях искомая величина А функционально связана с одной или несколькими непосредственно измеряемыми величинами: х, y ,..., t . Рассмотрим простейший случай определения погрешности при одной переменной, когда A = F (x ). Обозначив абсолютную погрешность измерения величины х через ±Dx , получим A+ DA = F(x± Dx).
Разложив правую часть этого равенства в ряд Тейлора и пренебрегая членами разложения, содержащими Dх в степени выше первой, получим
A+DA » F(x) ± Dx или DA » ± Dx.
Относительная ошибка измерения функции определится из выражения
.
Если измеряемая величина А является функцией нескольких переменных: A= F(x, y,..., t), то абсолютная погрешность результата косвенных измерений
.
Частные относительные погрешности косвенного измерения определяются по формулам ; и т. д. Относительная погрешность результата измерений
.
Остановимся также на особенностях оценки результата косвенного измерения при наличии случайной погрешности.
Для оценки случайной погрешности результатов косвенных измерений величины А будем полагать, что систематические погрешности измерений величин x, y,…, t исключены, а случайные погрешности измерения этих же величин не зависят друг от друга.
При косвенных измерениях значение измеряемой величины находят по формуле ,
где - средние или средние взвешенные значения величин x, y,…, t .
Для вычисления среднего квадратического отклонения значения измеряемой величины А целесообразно использовать средние квадратические отклонения, полученные при измерениях x, y,…, t .
В общем виде для определения среднего квадратического отклонения s косвенного измерения служит следующая формула:
, (4.7)
где Dx ; Dy ;…; Dt — так называемые частные погрешности косвенного измерения ; ; …; ; ; ; … ; частные производные А по x, y,…, t ; sx ; s y ,…, st , …— средние квадратические отклонения результатов измерений величин x, y,…, t .
Рассмотрим некоторые частные случаи применения уравнения (4.7), когда функциональная зависимость между косвенно и непосредственно измеряемыми величинами выражается формулой A = k × x a × y b × z g , где k - числовой коэффициент (безразмерный).
В этом случае формула (4.7) примет следующий вид:
.
Если a = b = g = 1 и A = k × x × y × z, то формула относительной погрешности упрощается до вида .
Эта формула применима, например, для вычисления среднего квадратического отклонения результата измерения объема по результатам измерения высоты, ширины и глубины резервуара, имеющего форму прямоугольного параллелепипеда.

4.5. Правила суммирования случайных и систематических погрешностей
Погрешность сложных измерительных приборов зависит от погрешностей отдельных его узлов (блоков). Погрешности суммируются по определенным правилам.
Пусть, например, измерительный прибор состоит из m блоков, каждый из которых обладает независимыми друг от друга случайными погрешностями. При этом известны абсолютные значения средних квадратических sk или максимальных М k погрешностей каждого блока.
Арифметическое суммирование или дает максимальную погрешность прибора, которая имеет ничтожно малую вероятность и поэтому редко используется для оценки точности работы прибора в целом. Согласно теории ошибок результирующая погрешность sрез и Мрез определяется сложением по квадратическому закону или .
Аналогично определяется и результирующая относительная погрешность измерения: . (4.8)
Уравнение (4.8) можно использовать для определения допустимых погрешностей отдельных блоков разрабатываемых приборов с заданной общей погрешностью измерения. При конструировании прибора обычно задаются равными погрешностями для отдельных входящих в него блоков. Если существует несколько источников погрешностей, которые на конечный результат измерения влияют неодинаково (или прибор состоит из нескольких блоков с разными погрешностями), в формулу (4.8) следует ввести весовые коэффициенты ki :
, (4.9)
где d1, d2, … , dm — относительные погрешности отдельных узлов (блоков) измерительного прибора; k1, k2, … , km - коэффициенты, учитывающие степень влияния случайной погрешности данного блока на результат измерения.
При наличии у измерительного прибора (или его блоков) также и систематических погрешностей общая погрешность определяется их суммой:. Такой же подход справедлив и для большего числа составляющих.
При оценке влияния частных погрешностей следует учитывать, что точность измерений в основном зависит от погрешностей, больших по абсолютной величине, а некоторые наименьшие погрешности можно вообще не учитывать. Частная погрешность оценивается на основании так называемого критерия ничтожной погрешности, который заключается в следующем. Допустим, что суммарная погрешность dрез определена по формуле (4.8) с учетом всех m частных погрешностей, среди которых некоторая погрешность di имеет малое значение. Если суммарная погрешность d¢рез, вычисленная без учета погрешности di, отличается от dрез не более чем на 5 %, т.е. dрез-d¢рез< 0,05×dрез или 0,95×dрез В практике технических расчетов часто пользуются менее строгим критерием - в эти формулы вводят коэффициент 0,4.

4.6. Формы представления результатов измерения

Результат измерения имеет ценность лишь тогда, когда можно оценить его интервал неопределенности, т.е. степень достоверности. Поэтому результат измерений должен содержать значение измеряемой величины и характеристики точности этого значения, которыми являются систематические и случайные погрешности. Количественные показатели погрешностей, способы их выражения, а также формы представления результатов измерений регламентируются ГОСТ 8.011-72 «Показатели точности измерений и формы представления результатов измерений». Рассмотрим основные формы представления результатов измерений.
Погрешность результата прямого однократного измерения зависит от многих факторов, но в первую очередь определяется погрешностью используемых средств измерений. Поэтому в первом приближении погрешность результата измерения можно принять равной
погрешности, которой в данной точке диапазона измерений характеризуется используемое средство измерений.
Погрешности средств измерений изменяются в диапазоне измерений. Поэтому в каждом случае, для каждого измерения необходимо произвести вычисления погрешности результата измерений, используя формулы (3.19) - (3.21) нормирования погрешности соответствующего средства измерений. Вычисляться должна как абсолютная, так и относительная погрешности результата измерения, так как первая из них нужна для округления результата и его правильной записи, а вторая — для однозначной сравнительной характеристики его точности.
Для разных характеристик нормирования погрешностей СИ эти вычисления производятся по-разному, поэтому рассмотрим три характерных случая.
1. Класс прибора указан в виде одного числа q, заключенного в кружок. Тогда относительная погрешность результата (в процентах) g = q, а абсолютная его погрешность Dх = q × x/ 100.
2. Класс прибора указан одним числом p (без кружка). Тогда абсолютная погрешность результата измерения Dх = p × xk / 100, где x k — предел измерения, на котором оно производилось, а относительная погрешность измерения (в процентах) находится по формуле ,
т е. в этом случае при измерении, кроме отсчета измеряемой величины х обязательно должен быть зафиксирован и предел измерений x k , иначе впоследствии нельзя будет вычислить погрешность результата.
3. Класс прибора указан двумя числами в виде c/d . В этом случае удобнее вычислить относительную погрешность d результата по формуле (3.21), а уже затем найти абсолютную погрешность как D x = d × x/100 .
После проведения вычислений погрешности используют одну из форм представления результата измерений в следующем виде: х; ± D и d , где х - измеренное значение; D - абсолютная погрешность измерения; d -относительная погрешность измерения. Например, производится следующая запись: «Измерение произведено с относительной погрешностью d = … %. Измеренное значение х = (А ± D) , где А - результат измерений».
Однако более наглядно указать пределы интервала неопределенности измеряемой величины в виде: x = (A- D) ¸(A+ D) или (A- D) < х < (A+ D) с указанием единиц измерения.
Другая форма представления результата измерения устанавливается в следующем виде: х ; D от доDв; Р, где х - результат измерения в единицах измеряемой величины; D , Dн, - соответственно погрешность измерения с нижней и верхней её границами в тех же единицах; Р - вероятность, с которой погрешность измерения находится в этих границах.
ГОСТ 8.011-72 допускает и другие формы представления результатов измерения, отличающиеся от приведенных форм тем, что в них указывают раздельно характеристики систематической и случайной составляющих погрешности измерения. При этом для систематической погрешности указывают её вероятностные характеристики. В этом случае основными характеристиками систематической погрешности являются математическое ожидание М[ Dхс ], среднеквадратическое отклонение s[Dхс ] и ее доверительный интервал. Выделение систематической и случайной составляющих погрешности целесообразно, если результат измерения будет использован при дальнейшей обработке данных, например, при определении результата косвенных измерений и оценке его точности, при суммировании погрешностей и т. п.

Любая из форм представления результата измерения, предусмотренная ГОСТ 8.011-72, должна содержать необходимые данные, на основании которых может быть определен доверительный интервал для погрешности результата измерения. В общем случае доверительный интервал может быть установлен, если известны вид закона распределения погрешности и основные числовые характеристики этого закона.

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример : в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например , длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374. Получим число 0,0695, переведем в проценты и получим 6%. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для отрезка длиной в 10 см погрешность в 1см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1%.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например , для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

Часто в жизни нам приходится сталкиваться с различными приближенными величинами. Приближенные вычисления - всегда вычисления с некоторой погрешностью.

Понятие абсолютной погрешности

Абсолютная погрешность приближенного значения это модуль разности точного значения и приближенного значения.
То есть из точного значения нужно вычесть приближенное значение и взять полученное число по модулю. Таким образом, абсолютная погрешность всегда величина положительная.

Как вычислять абсолютную погрешность

Покажем, как это может выглядеть на практике. Например, у нас имеется график некоторой величины, пускай это будет парабола: y=x^2.

По графику мы сможем определить приблизительное значение в некоторых точках. Например, при x=1.5 значение у приблизительно равно 2.2 (y≈2.2).

По формуле y=x^2 мы можем найти точное значение в точке x=1.5 у= 2.25.

Теперь вычислим абсолютную погрешность наших измерений. |2.25-2.2|=|0.05| = 0.05.

Абсолютная погрешность равна 0.05. В таких случаях еще говорят значение вычислено с точность до 0.05.

Часто бывает так, что точное значение не всегда можно найти, а, следовательно, абсолютную погрешность не всегда возможно найти.

Например, если мы будем вычислять расстояние между двумя точками с помощью линейки, или значение угла между двумя прямыми с помощью транспортира, то мы получим приближенные значения. А вот точное значение вычислить невозможно. В данном случае, мы можем указать такое число, больше которого значение абсолютной погрешности быть не может.

В примере с линейкой это будет 0.1 см, так как цена деления на линейке 1 миллиметр. В примере для транспортира 1 градус потому, что шкала транспортира проградуирована через каждый градус. Таким образом, значения абсолютной погрешности в первом случае 0.1, а во втором случае 1.

Нужна помощь в учебе?



Предыдущая тема:

1. Введение

Работа химиков, физиков и представителей других естественно-научных профессий часто связана с выполнением количественных измерений различных величин. При этом возникает вопрос анализа достоверности получаемых значений, обработки результатов непосредственных измерений и оценки погрешностей расчетов, в которых используются значения непосредственно измеряемых характеристик (последний процесс также называется обработкой результатов косвенных измерений). По целому ряду объективных причин знания выпускников химического факультета МГУ о расчете погрешностей не всегда достаточны для правильной обработки получаемых данных. В качестве одной из таких причин можно назвать отсутствие в учебном плане факультета курса по статистической обработке результатов измерений.

К данному моменту вопрос вычисления погрешностей, безусловно, изучен исчерпывающе. Существует большое количество методических разработок, учебников и т.д., в которых можно почерпнуть информацию о расчете погрешностей. К сожалению, большинство подобных работ перегружено дополнительной и не всегда нужной информации. В частности, большинство работ студенческих практикумов не требует таких действий, как сравнение выборок, оценка сходимости и др. Поэтому кажется целесообразным создание краткой разработки, в которой изложены алгоритмы наиболее часто употребляемых вычислений, чему и посвящена данная разработка.

2. Обозначения, принятые в данной работе

Измеряемая величина, -среднее значение измеряемой величины, - абсолютная погрешность среднего значения измеряемой величины, - относительная погрешность среднего значения измеряемой величины.

3. Расчет погрешностей непосредственных измерений

Итак, предположим, что были проведены n измерений одной и той же величины в одних и тех же условиях. В этом случае можно рассчитать среднее значение этой величины в проведенных измерениях:

(1)

Как вычислить погрешность ? По следующей формуле:

(2)

В этой формуле используется коэффициент Стьюдента . Его значения при разных доверительных вероятностях и значениях приведены в .

3.1. Пример расчета погрешностей непосредственных измерений:

Задача.

Проводили измерения длины металлического бруска. Было сделано 10 измерений и получены следующие значения: 10 мм, 11 мм, 12 мм, 13 мм, 10 мм, 10 мм, 11 мм, 10 мм, 10 мм, 11 мм. Требуется найти среднее значение измеряемой величины (длины бруска) и его погрешность .

Решение.

С использованием формулы (1) находим:

мм

Теперь с использованием формулы (2) найдем абсолютную погрешность среднего значения при доверительной вероятности и числе степеней свободы (используем значение =2,262, взятое из ):


Запишем результат:

10,8±0,7 0.95 мм

4. Расчет погрешностей косвенных измерений

Предположим, что в ходе эксперимента измеряются величины , а затем c использованием полученных значений вычисляется величина по формуле . При этом погрешности непосредственно измеряемых величин рассчитываются так, как это было описано в пункте 3.

Расчет среднего значения величины производится по зависимости с использованием средних значений аргументов .

Погрешность величины рассчитывается по следующей формуле:

,(3)

где - количество аргументов , - частные производные функции по аргументам , - абсолютная погрешность среднего значения аргумента .

Абсолютная погрешность, как и в случае с прямыми измерениями, рассчитывается по формуле .

4.1. Пример расчета погрешностей непосредственных измерений:

Задача.

Было проведено 5непосредственных измерений величин и . Для величины получены значения: 50, 51, 52, 50, 47; для величины получены значения: 500, 510, 476, 354, 520. Требуется рассчитать значение величины , определяемой по формуле и найти погрешность полученного значения.

Физические величины характеризуются понятием «точность погрешности». Есть высказывание, что путем проведения измерений можно прийти к познанию. Так удастся узнать, какова высота дома или длина улицы, как и многие другие.

Введение

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы - килограммы, объёма - кубические литры, времени - секунды, скорости - метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Наименование каждой приставки соответствует своему числу множителя:

  1. Дека.
  2. Гекто.
  3. Кило.
  4. Мега.
  5. Гига.
  6. Тера.

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 10 6 .

В простой линейке длина имеет единицу измерения - сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром - чтобы гигрометром - чтобы определять влажность, амперметром - замерять уровень силы, с которой распространяется электрический ток.

Насколько точны будут показатели проведенных измерений?

Возьмем линейку и простой карандаш. Наша задача заключается в измерении длины этой канцелярской принадлежности.

Для начала потребуется определить, какова цена деления, указанная на шкале измерительного прибора. На двух делениях, которые являются ближайшими штрихами шкалы, написаны цифры, к примеру, «1» и «2».

Необходимо подсчитать, сколько делений заключено в промежутке этих цифр. При правильном подсчете получится «10». Вычтем от того числа, которое является большим, число, которое будет меньшим, и поделим на число, которое составляют деления между цифрами:

(2-1)/10 = 0,1 (см)

Так определяем, что ценой, определяющей деление канцелярской принадлежности, является число 0,1 см или 1 мм. Наглядно показано, как определяется показатель цены для деления с применением любого измерительного прибора.

Измеряя карандаш с длиной, которая немного меньше, чем 10 см, воспользуемся полученными знаниями. При отсутствии на линейке мелкого деления, следовал бы вывод, что предмет имеет длину 10 см. Это приблизительное значение названо измерительной погрешностью. Она указывает на тот уровень неточности, которая может допускаться при проведении измерений.

Определяя параметры длины карандаша с более высоким уровнем точности, большей ценой деления достигается большая измерительная точность, которая обеспечивает меньшую погрешность.

При этом абсолютно точного выполнения измерений не может быть. А показатели не должны превышать размеры цены деления.

Установлено, что размеры измерительной погрешности составляют ½ цены, которая указана на делениях прибора, который применяется для определения размеров.

После выполнения замеров карандаша в 9,7 см определим показатели его погрешности. Это промежуток 9,65 - 9,85 см.

Формулой, измеряющей такую погрешность, является вычисление:

А = а ± D (а)

А - в виде величины для измерительных процессов;

а - значение результата замеров;

D - обозначение абсолютной погрешности.

При вычитании или складывании величин с погрешностью результат будет равен сумме показателей погрешности, которую составляет каждая отдельная величина.

Знакомство с понятием

Если рассматривать в зависимости от способа её выражения, можно выделить такие разновидности:

  • Абсолютную.
  • Относительную.
  • Приведенную.

Абсолютная погрешность измерений обозначается буквой «Дельта» прописной. Это понятие определяется в виде разности между измеренными и действительными значениями той физической величины, которая измеряется.

Выражением абсолютной погрешность измерений являются единицы той величины, которую необходимо измерить.

При измерении массы она будет выражаться, к примеру, в килограммах. Это не эталон точности измерений.

Как рассчитать погрешность прямых измерений?

Есть способы изображения погрешности измерения и их вычисления. Для этого важно уметь определять физическую величину с необходимой точностью, знать, что такое абсолютная погрешность измерений, что её никто никогда не сможет найти. Можно вычислить только её граничное значение.

Даже если условно употребляется этот термин, он указывает именно на граничные данные. Абсолютная и относительная погрешность измерений обозначаются одинаковыми буквами, разница в их написании.

При измерении длины абсолютная погрешность будет измеряться в тех единицах, в которых исчисляться длина. А относительная погрешность вычисляется без размеров, так как она является отношением абсолютной погрешности к результату измерения. Такую величину часто выражают в процентах или в долях.

Абсолютная и относительная погрешность измерений имеют несколько разных способов вычисления в зависимости от того, какой физических величин.

Понятие прямого измерения

Абсолютная и относительная погрешность прямых измерений зависят от класса точности прибора и умения определять погрешность взвешивания.

Прежде чем говорить о том, как вычисляется погрешность, необходимо уточнить определения. Прямым называется измерение, при котором происходит непосредственное считывание результата с приборной шкалы.

Когда мы пользуемся термометром, линейкой, вольтметром или амперметром, то всегда проводим именно прямые измерения, так как применяем непосредственно прибор со шкалой.

Есть два фактора, которые влияют на результативность показаний:

  • Погрешностью приборов.
  • Погрешностью системы отсчета.

Граница абсолютной погрешности при прямых измерениях будет равна сумме погрешности, которую показывает прибор, и погрешности, которая происходит в процессе отсчета.

D = D (пр.) + D (отс.)

Пример с медицинским термометром

Показатели погрешности указаны на самом приборе. На медицинском термометре прописана погрешность 0,1 градусов Цельсия. Погрешность отсчета составляет половину цены деления.

D отс. = С/2

Если цена деления 0,1 градуса, то для медицинского термометра можно произвести вычисления:

D = 0,1 o С + 0,1 o С / 2 = 0,15 o С

На тыльной стороне шкалы другого термометра есть ТУ и указано, что для правильности измерений необходимо погружать термометр всей тыльной частью. не указана. Остается только погрешность отсчета.

Если цена деления шкалы этого термометра равна 2 o С, то можно измерять температуру с точностью до 1 o С. Таковы пределы допускаемой абсолютной погрешности измерений и вычисление абсолютной погрешности измерений.

Особую систему вычисления точности используют в электроизмерительных приборах.

Точность электроизмерительных приборов

Чтобы задать точность таких устройств, используется величина, называемая классом точности. Для её обозначения применяют букву «Гамма». Чтобы точно произвести определение абсолютной и относительной погрешности измерений, нужно знать класс точности прибора, который указан на шкале.

Возьмем, к примеру, амперметр. На его шкале указан класс точности, который показывает число 0,5. Он пригоден для измерений на постоянном и переменном токе, относится к устройствам электромагнитной системы.

Это достаточно точный прибор. Если сравнить его со школьным вольтметром, видно, что у него класс точности - 4. Эту величину обязательно знать для дальнейших вычислений.

Применение знаний

Таким образом, D c = c (max) Х γ /100

Этой формулой и будем пользоваться для конкретных примеров. Воспользуемся вольтметром и найдем погрешность измерения напряжения, которое дает батарейка.

Подключим батарейку непосредственно к вольтметру, предварительно проверив, стоит ли стрелка на нуле. При подключении прибора стрелка отклонилась на 4,2 деления. Это состояние можно охарактеризовать так:

  1. Видно, что максимальное значение U для данного предмета равно 6.
  2. Класс точности -(γ) = 4.
  3. U(о) = 4,2 В.
  4. С=0,2 В

Пользуясь этими данными формулы, абсолютная и относительная погрешность измерений вычисляется так:

D U = DU (пр.)+ С/2

D U (пр.) = U (max) Х γ /100

D U (пр.) = 6 В Х 4/100 = 0, 24 В

Это погрешность прибора.

Расчет абсолютной погрешности измерений в этом случае будет выполнен так:

D U = 0,24 В + 0,1 В = 0,34 В

По рассмотренной формуле без труда можно узнать, как рассчитать абсолютную погрешность измерений.

Существует правило округления погрешностей. Оно позволяет найти средний показатель между границей абсолютной погрешности и относительной.

Учимся определять погрешность взвешивания

Это один из примеров прямых измерений. На особом месте стоит взвешивание. Ведь у рычажных весов нет шкалы. Научимся определять погрешность такого процесса. На точность измерения массы влияет точность гирь и совершенство самих весов.

Мы пользуемся рычажными весами с набором гирь, которые необходимо класть именно на правую чашу весов. Для взвешивания возьмем линейку.

Перед началом опыта нужно уравновесить весы. Линейку кладем на левую чашу.

Масса будет равна сумме установленных гирь. Определим погрешность измерения этой величины.

D m = D m (весов) + D m (гирь)

Погрешность измерения массы складывается из двух слагаемых, связанных с весами и гирями. Чтобы узнать каждую из этих величин, на заводах по выпуску весов и гирь продукция снабжается специальными документами, которые позволяют вычислить точность.

Применение таблиц

Воспользуемся стандартной таблицей. Погрешность весов зависит от того, какую массу положили на весы. Чем она больше, тем, соответственно, больше и погрешность.

Даже если положить очень легкое тело, погрешность будет. Этот связано с процессом трения, происходящим в осях.

Вторая таблица относится к набору гирь. На ней указано, что каждая из них имеет свою погрешность массы. 10-граммовая имеет погрешность в 1 мг, как и 20-граммовая. Просчитаем сумму погрешностей каждой из этих гирек, взятой из таблицы.

Удобно писать массу и погрешность массы в двух строчках, которые расположены одна под другой. Чем меньше гири, тем точнее измерение.

Итоги

В ходе рассмотренного материала установлено, что определить абсолютную погрешность невозможно. Можно лишь установить её граничные показатели. Для этого используются формулы, описанные выше в вычислениях. Данный материал предложен для изучения в школе для учеников 8-9 классов. На основе полученных знаний можно решать задачи на определение абсолютной и относительной погрешности.

Похожие статьи

© 2024 ap37.ru. Сад и огород. Декоративные кустарники. Болезни и вредители.